Cytokine-induced suppression of medial preoptic neurons: mechanisms and neuroimmunomodulatory effects.
نویسندگان
چکیده
We have shown that the medial preoptic area (MPO) in the hypothalamus is a major site where interferon (IFN)-alpha acts to induce suppression of splenic natural killer (NK) cell activity through an activation of sympathetic nervous system (SNS) in rats. Here, we discuss the hypothalamic mechanisms of the cytokine action using in vivo and in vitro preparations in rats. Lesion of the MPO activated the SNS and suppressed splenic NK cell activity in anesthetized rats, suggesting that the MPO had an inhibitory influence on nerve activity. Since both IFN-alpha and interleukin (IL)-1beta are known to suppress MPO neuron activity, it is suggested that the suppression/loss of the MPO caused by cytokine actions/lesions disinhibits the hypothalamic-sympathetic pathway, thereby resulting in an increase in the splenic SNS and reduction of NK activity. To explore the cellular mechanisms of the suppression of MPO neurons, the effects of Prostaglandin E2 (PGE2), one of the major mediators of cytokine action in the brain, on the glutamate-induced membrane currents were examined using the perforated patch-clamp method in mechanically dissociated MPO neurons. Patch-clamp analysis revealed that PGE2 potentiated the Ca2+-dependent K+ current (KCa) stimulated by Ca2+ entry through N-methyl-D-aspartate channels. We suggest that the cytokine-induced decrease in the firing rates of MPO neurons may be a result of an increase in interspike intervals caused by PGE(2)-induced enhancement of KCa in the presence of glutamatergic inputs.
منابع مشابه
Differential Effects of Estrogen Receptor alpha Suppression by Antisense Oligodeoxynucleotides in the Medial Preoptic Area and the Medial Amygdala on Male Rat Mating Behavior
Male rat copulation is mediated by estrogen-sensitive neurons in the medial preoptic area (MPO) and medial amygdala (MEA); however, the mechanisms through which estradiol (E2) acts are not fully understood. We hypothesized that E2 acts through estrogen receptor α (ERα) in the MPO and MEA to promote male mating behavior. Antisense oligodeoxynucleotides (ASODN) complementary to ERα mRNA were bila...
متن کاملThe Role of the Medial and Central Amygdala in Stress-Induced Suppression of Pulsatile LH Secretion in Female Rats
Stress exerts profound inhibitory effects on reproductive function by suppressing the pulsatile release of GnRH and therefore LH. Although the mechanisms by which stressors disrupt the hypothalamic GnRH pulse generator remain to be fully elucidated, numerous studies have implicated the amygdala, especially its medial (MeA) and central nuclei (CeA), as key modulators of the neuroendocrine respon...
متن کاملBrain-derived neurotrophic factor and maternal behavior : neuronal alterations in the medial preoptic area and suppression of pup attacks
Brain-Derived Neurotrophic Factor and Maternal Behavior: Neuronal Alterations in the Medial Preoptic Area and Suppression of Pup Attacks Lillian Flores Stevens Master of Arts in Psychology, 2003 University of Richmond Thesis Director: Dr. Craig H. Kinsley Brain-derived neurotrophic factor (BDNF), by virtue of its relationship to various neurotransmitter systems, hormones, and to estrogen in par...
متن کاملIntermediary role of kisspeptin in the stimulation of gonadotropin-releasing hormone neurons by estrogen in the preoptic area of sheep brain
Introduction: The role of estrogen in the stimulation of gonadotropin-releasing hormone (GnRH) neurons is clear. These neurons do not express estrogen alpha receptors, so other mediator neurons should be present to transmit the positive feedback effect of estrogen to the GnRH neurons. Kisspeptin neurons have an important role in the stimulation of GnRH neurons, so they can be the mediator of...
متن کاملSexually dimorphic effects of testosterone on preoptic area calcitonin gene-related peptide mRNA expression depend upon neuron location and differential estrogen and androgen receptor activation.
Experiments examined activational roles of gonadal steroids on the sexually dimorphic, calcitonin gene-related peptide-expressing neurons of the rat preoptic area. Gonadectomy of male rats followed by treatment with testosterone, dihydrotestosterone, or estrogen demonstrated that the tonic suppressive influence of testosterone on cellular levels of calcitonin gene-related peptide mRNA expressio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of the New York Academy of Sciences
دوره 1153 شماره
صفحات -
تاریخ انتشار 2009